Adding New users

- □ This is a routine chore on most systems
 - Automate the process
 - Example:
 - Lab access accounts in CS Labs
 - Get info from MTU NID database
 - Big Update Every semester
 - All automated using scripts
- □ The /etc/passwd file
 - A list of users
 - Consults at login time to determine a user's UID and to verify the users' password

1

/etc/passwd File

- Example:
 - nagios:x:667:667:Nagios Monitor:/usr/host/nagios:/bin/kshamanda:x:33:6:Amanda user:/var/lib/amanda:/bin/ksh
- Each line contains seven fields separated by :
 - Login name
 - Encrypted Password
 - UID number
 - Default GID number
 - user information: full name, office, phone, ...
 - Home directory
 - Login shell
- Login name
 - Usually no more than 8 characters long
 - Unique
 - Case sensitive, do use all lower case if possible

/etc/passwd File

- Encrypted password
 - Encrypted password is set by
 - Command passwd
 - yppasswd if NIS is used
 - Manual manipulation
 - Copy a encrypted string
 - Empty means no password
 - Use fake passwd * to prevent unauthorized use of the account
 - Default algorithm is DES
 - Encrypt the first 8 chars with 2 character "salts"
 - The encrypted passwd will be 13 character long
 - Does not take too long to decode it using faster hardware
 - Algorithm MD5
 - Passwords can be any length
 - Encrypted password starts with \$1\$, 31character long
 - Third party software may not accept it.

3

/etc/passwd File

- UID number
 - 32-bit integers
 - □ Limit to 32,767 if possible
 - □ By definition, root is UID 0
 - □ Fake logins at the beginning of /etc/passwd: bin, daemon, ...
 - Start at 100 for assigning uids.
- Discuss:
 - □ Reuse uid?
 - Recycling uid?
 - Uid across different machines?

/etc/passwd File

- Default GID number
 - □ 16 or 32bit integer (signed or unsigned)
 - GID 0 is for group root or wheel
 - Groups are defined in /etc/group
 - GID in /etc/passwd provides the effective GID at login time.
 - The effective GID is not used to determine access
 - The effective GID is used during creation of new files and directives.
 - Use setgid bit (2000)
 - Use newgrp command
 - UNIX allows a user to be in upto 16 groups

5

/etc/passwd File

- GECOS field
 - Record personal information about each user
- Home directory
 - Users are placed in their home dirs when they log in.
 - If home dir is missing
 - Some system will put the user in the root dir /
 - Some system will reject the user
- Login shell
 - Typically a command interpreter (/etc/shells)
 - Can be any program
 - The default is sh if nothing specified
 - Use chsh/password -e to change the default shell
 - Be careful to change root's default shell

Shadow Password

- To prevent the dictionary password cracking -hide the encrypted password
 - Make /etc/passwd from world readable to root readable only?
 - Lots of applications depend on /etc/passwd to get information about user
 - Use shadow password mechanism
 - Move encrypted password to another file which readonly by root
 - Besides password, shadow has the password aging info.
 - Mandatory in Solaris
 - Available Shadow utility in Linux distributions

7

Shadow Password

- □ The /etc/shadow file
 - Readonly by superuser
 - -r----- 1 root root 1039 Nov 7 09:58 /etc/shadow
 - Provides account information that's not available from /etc/passwd
 - password aging info
 - Forcing user to change password
 - One line for each user, including nine fields separated by colons:

Shadow Password

username:password:lastchg: min:max:warn: inactive:expire:flag

- 1. Login name
- 2. Encrypted password
- 3. Date of last password change
- 4. Minimum number of days between password changes
- 5. Maximum number of days between password changes
- Number of days in advance to warn users for password expiration
- 7. Number of inactive days before account expiration
- 8. Account expiration date
- 9. Flags

9

Shadow Password

Example: On fc4

[root@icu0 ~]# tail -n 1 /etc/shadow
millert:kE7WRAQ5jLoKY:13194::180:14::18627:

[root@icu0 ~]# chage -l millert
Last password change : Feb 15, 2006
Password expires : Aug 14, 2006
Password inactive : never
Account expires : Dec 31, 2020
Minimum number of days between password change : -1
Maximum number of days between password expires : 180
Number of days of warning before password expires : 14

Shadow Password

- Set password aging
 - Use password command
 - Example, On system V, some options of password command:
 - -n: minimum
 - -m: maximum
 - -f: force the change at next login
 - -S: list
 - -I: lock the account
 - -u: unlock
 - User default characteristics
 - □ Solaris: /etc/default/passwd, /etc/default/login
 - Linux: /etc/login.defs

11

On Solaris 8

\$more /etc/default/passwd
#ident "@(#)passwd.dfl 1.3 92/07/14 SMI"
MAXWEEKS=
MINWEEKS=
PASSLENGTH=6

FC1

\$grep PASS login.defs

```
# PASS_MAX_DAYS Maximum number of days a password may be used.
# PASS_MIN_DAYS Minimum number of days allowed between password changes.
# PASS_MIN_LEN Minimum acceptable password length.
# PASS_WARN_AGE Number of days warning given before a password expires.
PASS_MAX_DAYS 99999
PASS_MIN_DAYS 0
PASS_MIN_LEN 5
PASS_WARN_AGE 7
```

13

Group file

- /etc/group file
 - Contains names of UNIX groups and member list
 - Example:

s3141.1:#\$cs3141.1:3411:cs3141gr, jpwoods, ljinsok, mguclu, rcvanden, jrfreibecs3141.2:#\$cs3141.2:3412:cs3141gr, ajnowick, dmhardzi, drdeverr, joelarso

- Each line has 4 fields: groupname:password: gid:user-list
- Group password is rarely used
 - For changing to another group using newgrp which the user does not belong
- Start gid with a large number, such as 100.
 - Avoid collisions with vendor-supplied GIDs.

Adding New Users

- Process to add a new user
 - First, have the use sign the user agreement and policy statement
 - Required
 - Edit passwd and shadow files
 - Set an initial password
 - Create home directory
 - For the user
 - Copy default startup files to the user's home directory
 - Set the user's mail home and establish mail aliases if applicable
 - Others
 - Add the user to /etc/group file
 - Configure disk quotas
 - Verify the account

15

Adding New Users

- Editing the passwd and shadow files
 - # vi
 - # vipw
 - Only one person to edit the passwd at a time
 - Prompt for shadow change
- Setting an initial password
 - #passwd user
- Creating the user's home directory
 - # mkdir /home/joe
 - # chown joe:research /home/joe
 - # chmod 700 /home/joe
- Copying in the default startup files
 - Default system-wide startup files
 - User's own startup files
 - Store the typical files on a common place, such as /etc/skel
 - Copy the startup files to user's home dir

Common startup files

Comamnd	Filenames	Typical users
csh/tcsh	.login	Terminal type, env
csh/tcsh	.cshrc	Aliases, umask, history,path, env
csh/tcsh	.logout	Reminder, clear the screen
sh	.profile	
vi	.exrc	Editor options
emacs	.emacs_pro	
mail	.mailrc	Mail aliases, reader options
xrdb	.Xdefaults	Fonts, color, etc
startx	.xinitrc	X11 env
xdm	.xsession	X11 env

17

Adding New Users

Example:

```
# cp /etc/skel/.[a-zA-Z]* ~joe
# chmod 644 ~joe/.[a-zA-Z]*
# chown joe:research ~joe/.[a-zA-Z]*
```

Question: how about replacing the third line above with

chown joe:research ~joe/.*

Sample .login

```
# sample .login file
if (-e ~/.hushlogin) cat /etc/motd
limit coredumpsize 0k
umask 022
setenv PATH /usr/ucb:/bin:/usr/bin:/usr/local/bin
setenv PRINTER ps
setenv EDITOR emacs
mesg y
set prompt="hostname"-\!>> '
echo -n "Enter terminal type: "; set tt=$<
if ("$tt" != "") then
setenv TERM $tt
tset
endif
```

Sample .profile

Adding New Users

- □ Editing /etc/group file
 - Add the new user to the default group for recording purpose
 - Add the new user to root group for "su"
 - Add the new user to other groups for permission access control

21

Adding New Users

- Setting disk quotas
 - Use edquota interactively
 - Use edquota in prototype mode copy the definition from an existing users
 - Disk is cheap, quotas may not be necessary
- Verifying the new login
 - Login in as the new user
 - Check home dir and permission
 - Check startup files and their permissions: Is al
 - Inform the new user about their login and initial password

Removing Users

- □ When a user quits, remove the user.
 - Set disk quota to zero
 - Remove user's crontab
 - Remove temp files owned by the user in /var/tmp or /tmp
 - Remove the user from passwd and group file
 - Remove user's home dir
 - Make a copy
 - Verify there is no other space owned by the user
 - # quot /home
 - # find -x /home -nouser -print
 - Remove the user's mail spool
 - Remove the user from all other databases

23

Disabling Logins

- □ Disable a user
 - Mark the password *
 - Change the shell
 - Example:
 - +@nonenrolled:::::/usr/local/shells/gone

Account Management Utilities

- Graphic utilities
 - Solaris: admintool / HPUX: sam /...
- Command utilities
 - useradd / usermod / userdel
 - groupadd / groupmod / groupdel
- Example:

```
#useradd -c "David Hilbert" -d
  /home/csdept/hilbert -g student -G webadmin
  -m -s /bin/sh hilbert
#userdel hilbert
```

25

Account Management Utilities

- Advantage:
 - Easy to use
- Disadvantage
 - Time consuming
 - Not flexible
 - Not all options are available

Standard Unix Users and Groups Typically predefined users

- root
 - Superuser, uid=0
- daemon
 - Used to execute system processes
- hin
 - Owns the executable files for most user commands
- SVS
 - Owns system files
- adm
 - Owns the accounting files
- uucp
 - Unix to unix copy subsystem account, owns uucp tools and files
- cron, mail, news, usenet, lp and lpd
 - Pseudo-users to own files and run processes needed by the corresponding subsystems
- auth, auditor or audit
 - Pseudo-user associated with the system auditing facility
- nobody
 - Account used by the NFS product, uid = 65534

27

Standard Unix Users and Groups

- Typically predefined groups:
 - system or root or wheel
 - Under BSD, Members of this group is allowed to su to root, gid=0
 - daemon
 - Traditional owner of the spooling directories
 - kmem or mem
 - Owns system programs needing to read kernel memory directly
 - SVS:
 - Owns various system files
 - tty or terminal
 - Owns all special files connected to terminals, like write
 - cron, mail, uucp, news
 - Groups associated with various system facilities
- Note: username and group names are independent of each other.